Меню

Как правильно установить пневмоцилиндр

Регулирование скорости работы пневмоцилиндров

1. Конструкция пневмоцилиндра

В условиях современного производства часто возникают задачи, требующие перемещения и фиксации объектов. Например, на линиях упаковки пищевых продуктов (сыр, творог) и розлива напитков (молоко, соки, газированные напитки), на термопластавтоматах, при производстве резинотехнических изделий и т. д. Одним из наиболее простых и экономически выгодных устройств для линейного перемещения объектов является пневмоцилиндр.

На рисунке 1 несколько упрощённо показана конструкция пневмоцилиндра. Если порт P2 подключить к линии сжатого воздуха, а из порта P1 сбросить воздух в атмосферу, поршень цилиндра начнёт двигаться влево, приводя к выдвижению штока (прямой ход штока). Подача давления в порт P1 и сброс воздуха из порта P2 приводят к движению в противоположном направлении (обратный ход штока).

Рисунок 1 – Конструкция пневмоцилиндра

2. Фитинги с регулировкой расхода воздуха

Очевидно, что установка таких фитингов на обоих портах пневмоцилиндра (P1 и P2) не позволит независимо управлять скоростью прямого и обратного хода штока цилиндра, поскольку дросселирование потока воздуха при прохождении через фитинг происходит в обоих направлениях. В итоге скорость движения штока будет ограничена наименьшим расходом воздуха.

Для независимого управления скоростью прямого и обратного хода штока пневмоцилиндров применяют фитинги-регуляторы расхода с обратным клапаном. Их обозначение на пневмосхемах приведено на рисунке 3а. При направлении движения воздуха слева направо обратный клапан закрыт, и воздух через него не проходит (красная стрелка на рисунке 3б). Воздух проходит через дросселирующее устройство, с помощью которого осуществляется регулировка расхода (синяя стрелка на рисунке 3б). При направлении движения воздуха справа налево обратный клапан открывается, и основная часть потока воздуха проходит через него (красная стрелка на рисунке 3в). Некоторая часть воздуха продолжает проходить через дросселирующее устройство (синяя стрелка), однако, это практически не влияет на расход воздуха в целом.

Рисунок 3 – Принцип работы дросселя с обратным клапаном

Таким образом, использование дросселей с обратным клапаном обеспечивает регулирование расхода при движении воздуха в одном направлении и максимальный расход при движении воздуха в противоположном направлении. Поэтому при монтаже фитингов-регуляторов расхода с обратным клапаном следует соблюдать направление включения, указанное на пневмосхеме. Как правило, на самом фитинге нанесено его условное графическое обозначение, по которому становится понятно, в каком направлении осуществляется регулирование расхода воздуха, а в каком — обеспечивается полный расход. Например, на рисунке 4 показано расположение такого обозначения для фитингов с регулировкой расхода MV 21 и MV 34.

Рисунок 4 – Фитинги-регуляторы расхода с обратным клапаном

3. Регулирование скорости работы пневмоцилиндров

Регуляторы расхода (дроссели) с обратным клапаном позволяют осуществлять изменение расхода воздуха при его движении в одном направлении и не ограничивают расход в противоположном направлении. Эту особенность можно использовать для задания разной скорости движения поршня пневмоцилиндра в прямом и обратном направлении.

Возможны две разные схемы расположения дросселей с обратным клапаном при регулировании скорости хода штока пневмоцилиндра:

Читайте также:  Клиент казначейства казахстан как установить на компьютер

Рассмотрим эти варианты последовательно.

Регулирование расхода при подаче воздуха в цилиндр

При использовании данного способа регулирования сбрасываемый воздух будет выходить из пневмоцилиндра быстрее подаваемого, поскольку использование дросселей позволяет только уменьшить расход воздуха, но не увеличить его. Это приводит к тому, что в одной из камер цилиндра давление оказывается близким к атмосферному. Данная ситуация показана на рисунке 5: порт P1 соединён с атмосферой, в порт P2 осуществляется подача сжатого воздуха, шток цилиндра движется влево.

Рисунок 5 – Регулирование расхода при подаче воздуха в цилиндр

Такое распределение давлений внутри цилиндра имеет следующие последствия:

1. Ухудшается восприятие цилиндром нагрузки в направлении движения штока. Это происходит потому, что давление в камере цилиндра, в сторону которой осуществляется движение, близко к атмосферному, и оно не оказывает сопротивления движению в данном направлении.

2. При небольших скоростях шток начинает двигаться рывками. Дело в том, что расход поступающего в цилиндр воздуха ограничен, а объём камеры увеличивается по мере движения штока. Совместно с различными значениями силы трения покоя и силы трения скольжения это приводит к колебаниям давления внутри цилиндра и неравномерному движению штока.

3. Становится невозможной остановка штока цилиндра в промежуточных положениях с помощью клапанов 5/3 центр закрыт. Как видно на рисунке 5, одна из камер цилиндра находится под давлением, а вторая — нет. Поэтому при переводе распределительного клапана 5/3 центр закрыт в среднее положение неизбежно продолжение движения цилиндра до тех пор, пока давление в обеих камерах не уравновесится.

Регулирование расхода при сбросе воздуха из цилиндра

При использовании данного способа регулирования подача воздуха в цилиндр осуществляется с максимальным расходом, а расход воздуха при сбросе в атмосферу ограничен, т. е. воздух может поступать в цилиндр быстрее, чем выходить из него. При данной схеме регулирования давление в сбросной камере пневмоцилиндра сохраняется во время движения штока (рисунок 6, камера порта P1).

Рисунок 6 – Регулирование расхода при сбросе воздуха из цилиндра

Такой способ регулирования имеет следующие особенности:

1. Пневмоцилиндр хорошо воспринимает нагрузку как сонаправленную с движением штока, так и имеющую противоположное направление, поскольку обе камеры цилиндра находятся под давлением.

2. По сравнению с предыдущей схемой регулирования становится возможным достижение более медленных скоростей движения при сохранении плавности хода штока.

3. Упрощается остановка штока в заданном положении. Так как обе камеры цилиндра находятся под давлением, при их перекрытии цилиндр быстро достигает равновесного состояния. Это существенно уменьшает расстояние, пройденное штоком от момента перекрытия портов цилиндра до полной остановки штока.

Из этого следует, что регулирование расхода при сбросе воздуха из цилиндра является предпочтительным по сравнению с регулированием расхода при подаче воздуха в цилиндр.

Читайте также:  Как установить программу fain reader

4. Фитинги с регулировкой расхода для разных способов монтажа

При рассмотрении конструкции и принципа работы фитингов с регулировкой расхода были упомянуты две модели таких фитингов: MV 21 и MV 34 (см. рисунок 4). Конструкция фитингов-регуляторов позволяет легко смонтировать их на панели. Поэтому данные модели удобно использовать в случаях, требующих оперативной подстройки скорости работы пневмоцилиндров.

Однако, в некоторых случаях, регулирование оператором скорости работы пневмоцилиндров не только не требуется, но и может иметь негативные последствия. Например, неправильная настройка взаимодействующих между собой механизмов может привести к некорректной работе всей установки. Для ограничения доступа оперативного персонала к устройствам регулирования скорости пневмоцилиндров существуют модификации фитингов с регулировкой расхода, монтируемые непосредственно на пневмоцилиндры или на распределительные клапаны. На рисунке 7 приведён внешний вид и пневмосхемы таких фитингов.

Рисунок 7 – Фитинги с регулировкой расхода с обратным клапаном

На рисунке 8 приведены пневмосхемы для подстройки скорости прямого и обратного хода штока пневмоцилиндра Vesta NWT 050.0100, управляемого клапаном VALMA PIV-S-A-14.

5. Выводы

Инженер ООО «КИП-Сервис»
Быков А.Ю.

Источник

Золотые правила подбора пневмоцилиндров

Расчёт силы и давления пневматического цилиндра

Конструкция и размеры пневматических систем часто подбираются отсновываясь на опыте, сочетая опасения перед спецификой важного, дорогостоящего оборудования. Для обеспечения достаточной мощности инженеры выбирают завышенные размеры пневмоцилиндров, что влечёт к завышенным размерам распределителей, чтобы обеспечить пневмоцилиндры достаточным количеством воздуха. Неопределенность в этих вопроса может привести к увеличению сметы пневмосистемы. В результате получаются компоненты большего, чем необходимо размера, использующего слишком много сжатого воздуха, что влечёт к технологическим потерям энергии и денег. Однако когда следуешь зарекомендовавшим правилам и некоторым законам пневматики легко достичь правильного размера пневматических установок.

Пневмоцилиндр

Золотое правило: значение теоретического усилия выбираемого цилиндра должено быть на 25% больше при высокой скорости, на 50% больше при низкой скорости и на 100% больше при наиболее низкой скорости позиционирования движения штока.

Золотое правило: правильно выбирайте размеры фитингов, сечения труб и выбирайте кратчайшую длину труб, это позволит свести к минимуму время цикла и снизит потребление энергии.

Распределитель

Изменения в клапанных технологиях создают более высокий расход при наименьших размерах клапанов. Например, расход традиционно широких клапанов 42 мм (ISO №1) около 1250 л/мин, а современный клапан может достигать тот же расход всего при 20 мм. Иногда используются старые правила, на основании которых для выбора распределительного клапана определяющую роль служит размер порта цилиндра, эти правила имеют ряд недостатков. В частности, порт цилиндра может быть не полнопроходным (порт больше проходного отверстия), цилиндр в этом случае может не приблизиться к необходимой скорости штока. Гораздо лучше подбирать клапан по расходу воздуха, требуемого цилиндру для конкретной задачи.

Золотое правило: подбирайте пневмораспределитель исходя из наибольших мгновенных параметров потока, требуемые цилиндру. Величина расхода распределителя должна соответствовать требованиям скорости штока. Не используйте среднего значения л/мин.

Читайте также:  Как установить другой конфиг

График дает представление о типичных диапазонах расхода, соответствующего различным номинальным размерам клапанов Norgren. Значения расхода указаны по вертикальной линии, при входном давлении 6 бар и выходного давлении 5 бар (с перепадом давления 1 бар).

На практике

Допустим, что у нас есть три цилиндра, работающих в последовательности:

Цилиндр A: Ø 25 мм, длина хода 100 мм

Цилиндр B: Ø 80 мм, длина хода 200 мм

Цилиндр C: Ø 63 мм, длина хода 900 мм

Последовательность: A+, B+ затем C+ затем C- затем A-, B-

Из таблицы расхода воздуха, вы найдете следующие расходы воздуха при 6 бар рабочего давления (манометрического):

Цилиндр A: VA+ = 0,00344 x 100 = 0,334 л; VA- = 0,00289 x 100 = 0,289 л; VA итого = 0,623 л

Цилиндр B: VB+ = 0,03519 x 200 = 7,038 л; VB- = 0,03175 x 200 = 6,35 л; VB итого = 13,388 л

Цилиндр С: VС+ = 0,02182 x 900 = 19,638 л; VС- = 0,01962 x 900 = 17,658 л; итого = 37,296 л

Теперь можно рассчитать общий расход воздуха на время цикла 5 секунд:

Q =((VA + VB + VC) + 5%) / время цикла = 10,775 л/сек = 646,5 л/мин

Если Вы не хотите рассчитывать, используйте золотые правила:

Источник

Основные правила установки пневмоцилиндра

Правило №1:

Оси штока поршня должны соответствовать направлению движения груза. Иначе может произойти повреждение внутренней поверхности цилнидра, штока, поршня и уплотнений.

Правило №2:

Избегайте такого подключения штока пневмоцилиндра, когда груз оказывается без опоры при действующей на него силе тяжести. В случае такого подключения необходимо добавлять ролики, которые бы могли поддерживать груз. Иначе поршневой шток может получить изгиб, что приведет к поврежденю внутренней поверхности цилиндра и уплотнений.

Правило №3:

Не допускайте моментов, когда нагрузка на шток идет через дополнительное звено ниже оси расположения штока. В таком случае можно использовать противовес, который бы смог компенсировать нагрузку, способную привести к изгибу штока и повреждению внутренней поверхности цилиндра и уплотнений.

Правило №4:

Стремитесь располагать крепление ближе к центру цилиндра, чтобы дистанция между точкой опоры и точкой нагрузки не была слишком значительной.

Правило №5:

Пневмоцилиндры с большим ходом штока необходимо подключать таким образом, чтобы исключить изгиб самого штока. К примеру, использовать направляющую и движущиеся по ней ролики. Подобная конструкция снизит возможность отклонения штока от оси его движения и исключит его изгиб.

Правило №6:

Правило №7:

В данной ситуации существует тенденция к изгибу штока. Чтобы ее избежать, крепление необходимо разместить ближе не к задней, а к передней крышке цилиндра.

Правило №8:

Если высота между монтажной поверхностью кронштейна и опорой слишком велика, то может произойти повреждение установочного болта и других элементов.

Правило №9:

При установке пневмоцилиндра всякий раз необходимо учитывать направление нагрузки (при креплении фланцевого типа).

Источник