Лучшая схема расположения двух корпусных вентиляторов для максимального охлаждения процессора и зоны VRM, а также безопасное снятие прилипшего кулера с AMD Ryzen
Вступление
В летнюю жару я продолжаю серию статей об эффективном охлаждении комплектующих, и в сегодняшней выпуске будет разобрана, возможно, лучшая схема построения воздушных потоков для эффективного охлаждения процессора AMD Ryzen 7 2700 в разгоне, а также обдува радиаторов зоны VRM при использовании всего двух корпусных вентиляторов. За подсказанную схему хочется выразить благодарность одному из читателей блога, который подал мне революционную идею в комментариях к предыдущей статье, как наиболее эффективным образом расположить вентиляторы в корпусе.
реклама
В дополнение к теме охлаждения я решил показать, как безопасно снять прилипший кулер к процессору под сокет AM4, чтобы сохранить ножки процессора и свои нервы в полном порядке. Ну и не обошлось, конечно, без теста термопаст, ведь башню GELID Phantom, обзор на которую был в одной из прошлых статей, я решил снять не просто так, а чтобы заменить комплектную фирменную термопасту GELID на проверенную и излюбленную мной Arctic Cooling MX-4.
Что же, вам я желаю приятного чтения, а начну я со снятия прилипшей к процессору башни.
Как снять прилипший кулер к процессору AMD Ryzen и ничего не сломать?
В случае с моей башней GELID Phantom необходимо снять вентиляторы, чтобы подобраться непосредственно к креплению прижима.
реклама
Крепеж я советую ослаблять поочередно. Если вы параноик, то можете ослаблять крепление по половине оборота. Поочередное ослабление прижима защитит башню от перекоса.
реклама
реклама
Поздравляю! Кулер безопасно отсоединен, ноги процессора на месте, ваши нервы сохранены, а мне не придется выпускать статью о том, как выпрямить ноги процессору AMD Ryzen.
Как истинный адепт тонкого слоя, пластиковой карточкой по собственной методике «трех взмахов» я наношу тончайший слой зарекомендовавшей себя Arctic Cooling MX-4, предварительно очистив процессор и основание кулера от старой термопасты и обезжирив их специальным обезжиривателем (вы же можете использовать ацетон или спирт).
Я прекрасно осознаю, что распределять термопасту по крышке процессора бессмысленно, но для меня данное действие является ритуальным. Тем более, что метод «капли» может испачкать подложку процессора и сокет термопастой, излишкам которой свойственно вытекать. Мне же приятно иметь более или менее чистую материнскую плату.
Сравнение комплектной термопасты GELID с Arctic Cooling MX-4 + «пристрелочные» температурные показатели открытого стенда
И вот башня вновь была водружена на Ryzen 7 2700, и самые внимательные читатели, наверное, уже догадались, какую схему построения воздушных потоков мы сегодня будем тестировать. Но не так быстро, друзья энтузиасты и любители, для начала неплохо было бы сравнить термопасту Arctic Cooling MX-4 с комплектной термопастой GELID, чтобы все-таки выяснить, имеет ли вообще смысл менять комплектную термопасту на проверенную.
Итак, за 15 минутное тестирование в Linpack процессор AMD Ryzen 7 2700, разогнанный до частоты в 4 ГГц по всем ядрам, с термопастой Arctic Cooling MX-4 прогрелся до максимальной температуры в 81°, напомню, что в прошлом тестировании ядра процессора прогрелись максимум до 83°.
Собственно, как я уже и отмечал ранее, комплектная термопаста GELID оказалась достаточно неплохой, хоть и имела слишком вязкую и липкую консистенцию. Возможно, что эти действия в начале и не стоили двух градусов, которые удалось выиграть, но сохранность ножек процессора для меня важнее, чем в очередной раз потраченная термопаста.
И, так как тестовый стенд мне это позволяет, во время тестирования я все-таки замерил нагрев радиатора на зоне VRM, отвечающего за охлаждение цепей питания ядер процессора. Для большей точности данного измерения я установил термодатчик из другого компьютера в радиатор. Его показания я сверил с пирометром.
На семнадцатой минуте тестирования Linpack, судя по показаниям термодатчика, радиатор прогрелся лишь до 49°. А я напомню, что тепловыделение процессора составляет около 160 ватт, параметры LLC же были выставлены на максимум.
Пирометр показывает идентичную температуру в той же точке. Следовательно, этим показаниям можно доверять. Теперь попробуем «нащупать» температурный максимум на концах радиатора.
Максимальная зафиксированная температура составила практически 57°, что я считаю отличным результатом для бюджетной материнской платы.
Тестирование лучшей схемы из двух корпусных вентиляторов для эффективного охлаждения процессора и зоны VRM
Итак, собственно, схема выходит совершенно незамысловатая и выглядит следующим образом: на задней стенке корпуса располагается вентилятор на вдув, за счет непосредственной его близости к башенному вентилятору создается мощнейший продув, который наполняет радиаторы башни свежим комнатным воздухом. Так как используется 140-мм вентилятор, поток воздуха, создаваемый им, также обдувает радиатор, расположенный на зоне VRM, что также положительным образом сказывается на его эффективности и, соответственно, температурах. Сразу за башней следует вентилятор на выдув, размещенный на верхней перфорации корпуса. Он вытягивает горячий воздух из башни, а также тянет горячий воздух видеокарты, способствуя, выходит, комплексному отводу тепла.
Давайте же сравним эффективность открытого стенда и новой схемы расположения вентиляторов.
Как мы можем наблюдать, эффективность данной системы охлаждения сопоставима с открытым стендом.
Я думаю, что не лишним станет оценить, на сколько сильно прогрелся радиатор, расположенный на зоне VRM.
Температура радиатора составила практически 49°, что можно назвать превосходным результатом для закрытого корпуса.
Заключение
В заключении давайте подытожим плюсы и минусы данной схемы расположения корпусных вентиляторов и начнем с плюсов: превосходное охлаждение процессора и дополнительный обдув зоны VRM, сильный и прямой забор воздуха. Минусов же у данной схемы несколько больше, а именно: нет обдува жестких дисков, нет обдува видеокарты, вследствие отсутствия фильтра идет сильнейшее всасывание пыли.
Мое мнение таково, что данная схема расположения вентиляторов подойдет тем, у кого компьютер развернут задом в большую часть пространства, чем передом (если он стоит «мордой в стену»); оверклокерам; пользователям, чьи процессоры значительно горячее видеокарт; людям, отказавшимся от использования жестких дисков; владельцев ПК с интегрированным графическим ядром. Категорически не советую данную схему расположения вентиляторов владельцам горячих видеокарт.
Источник
Как организовать вентиляцию ПК. Краткое руководство для начинающих
Вопрос, который рано или поздно встает перед любым владельцем ПК, — охлаждение. Перегрев комплектующих вызывает снижение производительности, а в худшем случае дело заканчивается деградацией процессора и отвалом чипов. И наоборот — бездумное обвешивание корпуса вентиляторами может превратить его в настоящий пылесос, который будет раздражать домочадцев своим гулом.
Качество работы системы вентиляции зависит от типа и количества вентиляторов, способа подключения их к материнской плате и правильного расположения в корпусе компьютера. Впрочем, обо всем по порядку.
Основные характеристики вентиляторов
Статическое давление — напор воздуха, создаваемый вентилятором. Зависит от его конструкции и скорости вращения крыльчатки. Чем выше этот показатель, тем лучше работает вентилятор в условиях большого сопротивления (например, при прокачке воздуха через мелкоячеистый радиатор).
Воздушный поток (CFM) — количество прокачиваемого воздуха. Исторически сложившиеся единицы измерения — кубические футы в минуту. Эффективную работу показывают устройства с CFM больше 50.
Скорость вращения (RPM) — количество оборотов в минуту. Чем больше, тем выше производительность (и шум). У большинства моделей не превышает 2000.
Широтно-импульсная модуляция (ШИМ, или PWM) — автоматическая регулировка оборотов вентилятора с помощью материнской платы. Требует разъема 4 pin. Провести точную настройку можно с помощью специальных фирменных утилит.
Толщина вентилятора — обычно составляет около 25 мм. Для небольших корпусов (HTPC) выпускаются более тонкие версии, однако их эффективность ниже ввиду более слабого статического давления и CFM.
Тип подшипника — важная характеристика, от которой зависит ресурс и уровень создаваемого шума. В современных моделях можно встретить несколько видов: от самого дешевого подшипника скольжения (с низким ресурсом) до самых дорогих и редких керамического подшипника качения и подшипника с магнитным центрированием. Золотой серединой по ресурсу, цене и шуму являются вертушки с гидродинамическим подшипником.
Уровень шума — измеряется в дБА. Значение, комфортное для человеческого уха, не должно превышать 30 дБА. Больше вентиляторов — не значит шумнее. Чаще всего дело обстоит наоборот, особенно если вентиляторами управляет материнская плата, контролирующая температуру компонентов.
Размер имеет значение
От размера вентилятора зависит его производительность и уровень шума. Чем больше диаметр, тем меньше нужно сделать оборотов для достижения нужного эффекта и тем тише он работает. Чаще всего рядовому пользователю приходится иметь дело с вентиляторами следующих типоразмеров:
92 х 92 мм — уходящий формат, которому производители корпусов уделяют все меньше внимания. По стоимости сравнимы с более эффективными вентиляторами большего размера.
120 х 120 мм — дешево и сердито. Самые распространенные и универсальные. Хороший четырехпиновый вариант можно купить в пределах 1000 рублей.
140 х 140 мм — идеальный, по мнению автора, баланс шума и производительности. Цена за приличную модель стартует от 1000 рублей.
200 х 200 мм — решение редкое, но довольно эффективное в плане охлаждения и тишины. Главная проблема — найти замену в случае поломки. Второй спорный момент — стоимость, которая у именитых производителей начинается от четырех тысяч рублей.
Отдельные производители встраивают в свои корпуса настоящих монстров.
Стоит понимать, что выбор корпуса с вентиляторами редких размеров в случае их поломки может обернуться некоторыми проблемами. Если же корпус рассчитан на стандартные 120/140-миллиметровые вертушки, возместить потерю будет проще и быстрее. Как показывает практика, хорошие 140-миллиметровые вентиляторы при 600–800 об/мин или 120-миллимитровые на 800–1000 оборотах обеспечат хороший результат и максимальный акустический комфорт.
Варианты подключения вентиляторов к материнской плате. Типы разъемов
Современные вентиляторы подключаются к материнской плате посредством 3- или 4-пинового разъема. От типа подключения будет зависеть возможность управления скоростью вентиляторов программным способом. Более экзотическими являются 2-пиновый разъем (обычно используется в БП) и 6-пиновый (с управлением подсветкой). Подключение вентиляторов напрямую к блоку питания через Molex считается устаревшим.
У 3-пиновых моделей скорость вращения зависит от изменения напряжения. Возможен мониторинг скорости, однако ШИМ отсутствует. Часто такие вентиляторы работают на повышенных оборотах и издают больше шума.
У 4-пиновых моделей скорость вращения регулируется материнской платой с помощью дополнительного провода. Современные BIOSы прекрасно справляются с автоматическим управлением вентиляторов, главное — правильно выставить температурные лимиты в настройках материнской платы.
Большинство современных материнских плат имеют 4-пиновые разъемы, но варианты с 3 pin еще встречаются. В случае необходимости можно подключить 4-пиновый вентилятор к материнской плате с 3-контактными разъемами и наоборот. Вентиляторы при этом будут работать на стандартных оборотах.
Регулировать скорость вентиляторов можно и с помощью реобаса. Но эпоха подобных устройств уходит в прошлое: в современных корпусах для них не осталось места, а их функции взяли на себя материнские платы.
Если вентиляторов больше, чем разъемов на МП, используются специальные разветвители. Однако увлекаться ими не стоит: на один канал больше двух вентиляторов лучше не вешать. В противном случае придется обеспечить им дополнительное питание, что приведет к появлению лишних проводов в корпусе.
В любом случае уже на этапе покупки материнской платы нужно понимать, какое количество вертушек понадобится будущей системе. Несмотря на более высокую стоимость, предпочтение стоит отдать 4-пиновым вентиляторам с наиболее совершенным способом управления.
Сколько нужно вентиляторов и как их установить
Современная модель корпусостроения предполагает создание своеобразной аэродинамической трубы: холодный воздух поступает спереди, а горячий — выбрасывается через заднюю и верхнюю стенки. Корпуса с вентиляторами на боковой стенке и на дне из продажи почти исчезли. Чаще всего производители стараются создать в корпусе избыточное давление (ставят больше вентиляторов на вдув), и это не просто так. Во-первых, горячий воздух будет удалятся эффективнее, во-вторых, в корпусе будет оставаться меньше пыли.
Одного вентилятора вполне хватит, чтобы охладить системник офисного уровня без видеокарты с каким-нибудь селероном, пентиумом, семпроном или A10, где TDP процессора находится в районе 50 Вт. Автор предпочитает установку вентилятора на вдув, так как с выбросом горячего воздуха поможет кулер на процессоре, особенно если он башенного типа.
Расположение вентилятора показано схематично и зависит от типа корпуса и расположения в нём комплектующих.
Два корпусных вентилятора (один спереди, один сзади) вполне справятся с комбинацией типа Ryzen 3 (Core i3) + GTX 1650 (RX 550).
Три вентилятора (два спереди, один сзади) — заявка на средний уровень: Ryzen 5 (Core i5) + 2060 (RX 5500XT).
Четыре вертушки обеспечат нормальную работу для Ryzen 7 (Core i7) + 2070 (RX 5600XT).
Все меняется, когда в корпус приходит Ее Величество Игровая Видеокарта — главный отопитель любого игрового ПК. Чтобы удержать в узде тепловыделение HEDT-систем, кроме просторного корпуса нужно пять-шесть вентиляторов: два-три лицевых на вдув, один задний и два верхних на выдув. Или кастомная СВО.
Несколько советов
Открытая крышка системника — не панацея и решает вопрос только охлаждения процессора и видеокарты, а вот другие компоненты — чипсет, цепи питания, m.2 накопитель — обдува не получат и продолжат греться.
Современные производители часто делают сплошную лицевую панель с боковым забором воздуха. В таком случае хороший результат дает установка дополнительных вытяжных вентиляторов на верхнюю крышку.
Для процессорных кулеров и радиаторов СВО ищите вентиляторы с более высоким значением статического давления, которые смогут эффективнее прогонять через них воздух.
Подвод холодного воздуха через вентилятор на дне — неплохое решение, но автор бы от него отказался ввиду большого количества пыли, забрасываемой таким вентилятором в корпус.
Ставить вентиляторы на вдув на задней и верхней стенке нельзя, как и передние на выдув.
Автор не рекомендует переворачивать блок питания вентилятором вверх: он начнет засасывать горячий воздух от видеокарты и нагревать свои компоненты.
Источник
Проблема бюджетных материнских плат.
реклама
Но плата ведь оверклокерская, позволяющая неплохо разгонять даже восьмиядерные процессоры. И для хорошего разгона с сохранением комфортных температур и приемлемого уровня шума двумя корпусными вентиляторами просто так не обойтись. Желательно иметь «двухголовую» башню с двумя вертушками, такую как GELID Phantom, недорогую и отлично подходящую для охлаждения процессоров Ryzen 3000 серии, в том числе и Ryzen 9 3900X с небольшим андервольтом.
реклама
И вот, после покупки хорошей башни оказывается, что для подключения корпусных вентиляторов в нашей плате остается лишь один разъем. Естественно, ни о каком оверклокинге летом не может быть и речи, когда имеется достаточно горячий процессор, мощная видеокарта и всего один корпусный вентилятор.
реклама
Конечно, можно использовать открытый стенд, располагая его прямо под кондиционером или открытым окном, но такое решение ведет к возрастанию рисков, связанных с безопасностью комплектующих.
реклама
Официальные представители крупных вендоров однозначно против использования хабов и разветвителей для подключения большого числа вентиляторов к одному разъему питания на материнской плате. Категорически не рекомендуется превышать силу тока в 1 ампер на разъем для подключения вентиляторов, это может повредить вашей материнской плате, так как есть вероятность того, что дорожки на текстолите платы просто сгорят и это не будет являться гарантийным случаем.
Мнение же представителей ASUS таково, что использование различных хабов и переходников может привести к некорректной работе функций мониторинга и автоматической регулировки скорости вращения вентиляторов.
Выяснив официальное мнение представителей различных вендеров, стоит перейти от теории к практике и выбрать правильные разветвители, которые не нанесут вреда комплектующим, материнской плате в частности.
Практика выбора безопасных разветвителей для вентиляторов
Итак, разберемся с типичным представителем потенциальных «убийц» материнских плат. На картинке представлен крайне «плохой» разветвитель для вентиляторов, судя по всему китайского производства. «Плохим» данное изделие делает то, что такой разветвитель дает возможность подключить сразу 5 вентиляторов к одному разъему 4-pin. Вполне возможно, что если эти вентиляторы будут работать на минимальных оборотах и все они будут являться крайне слабыми, то большого вреда данный продукт не принесет вашей материнской плате. Но если вы подключите в разветвитель 5 мощнейших вентиляторов и заставите их работать на максимальных оборотах, то у вас будут все шансы довольно быстро отправить и без того бюджетную материнскую плату на тот свет, так как, уверяю вас, сила тока составит гораздо больше 1 ампера.
Убедительная просьба: остерегайтесь подобных решений и не повторяйте данных экспериментов с дешевыми разветвителями.
Теперь, когда читатель достаточно «напуган» подобными решениями, нам предстоит выбрать безопасные и достойные разветвители для того, чтобы наладить эффективную циркуляцию воздуха внутри корпуса даже с компактной и бюджетной материнской платой без большого числа разъемов для подключения вентиляторов.
Относительно неплохим решением будет использовать что-то вроде Y-разветвителя, такого как Noctua NA-SYC2, по крайней мере, возможность подключить лишь два вентилятора к одному разъему не навредит вашей материнской плате, если данные вентиляторы окажутся не самыми мощными.
Самым правильным решением будет являться покупка разветвителя с дополнительным питанием MOLEX. Типичным представителем такого разветвителя является GELID Solutions PWM (CA-PWM-03).
Также отличным решением будет покупка реобаса. Но если вы экономите на материнской плате, то вряд ли у вас найдется несколько тысяч рублей на реобас. Да и не каждый современный корпус предусматривает установку регулятора скорости вращения вентиляторов. Хотя, даже если в вашем корпусе не предусмотрен отсек 5,25″, существуют современные реобасы, которые рассчитаны под новые корпуса, но обойдутся вам такие решения существенно дороже. А с другой стороны, зачем отказывать себе в комфорте? Не проще ли купить одну качественную вещь, способную радовать вас долгие годы?
Заключение
Предлагаю подытожить вышесказанное: первое, комплексно подходите к выбору материнской платы, обращайте внимание на количество разъемов для подключения вентиляторов, стоит всегда помнить, что скупой платит дважды и иногда стоит переплатить за возможность подключения не трех, пяти вентиляторов, выбрав полноразмерную и более продуманную модель материнской платы; второе, если вы все-таки промахнулись с выбором материнской платы, самым бюджетным, но безопасным способом подключения дополнительных вентиляторов будет являться покупка разветвителя с дополнительным питанием MOLEX или SATA; третье, если вы хотите навсегда решить проблему с малым количеством разъемов для вентиляторов на материнской плате, вам стоит приобрести реобас, который подарит вам комфорт от пользования ПК, благодаря тонкой настройке вентиляторов под собственные предпочтения.
А пользуетесь ли вы разветвителями для вентиляторов и сколько вентиляторов в вашем системном блоке?
Источник